NEOPO(1) neopo Manual NEOPO(1)

NAME

neopo — A lightweight solution for local Particle development

SYNOPSIS

neopo [COMMAND] [PROJECT] [OPTIONS] [-v/q]
neopo create <project> [platform] [version]

neopo configure <platform> <version> [project]
neopo build [project] [-v/q]

neopo particle [OPTIONS]

neopo script [file]

DESCRIPTION

Neopo is a Particle development management utility that simplifies the installation and usage of Particle’s
toolchains on a variety of distributions. It features options to build or flash projects, iterable commands, a
scripting interface, and Particle Workbench/CLI compatibility. On Linux, several packages required for
Workbench to operate successfully are installed as dependencies for neopo, providing incredible value to
Workbench users, even if they do not choose to use neopo’s interfaces.

Neopo was designed with extensibility and portability in mind in an attempt to create a useful and unobtru-
sive local Particle development environment. While neopo excels at installing Particle toolchains and build-
ing Particle projects with its simple but powerful command-line options, it additionally provides shortcuts
for commonly performed tasks and two scripting interfaces.

Users can create simple scripts to automate testing and deployment of firmware and execute them with
neopo script or leverage neopo’s Python API to integrate local Particle tools into existing Python solutions.

COMMANDS

When using neopo from the command line, options must be used in the exact order specified in the docu-
mentation, much like Particle CLI or Git. Arguments denoted in square brackets [] are optional, while argu-
ments denoted in angle brackets <> are mandatory.

GENERAL COMMANDS

neopo

help. When neopo runs with help, or without arguments, brief documentation for all user-accessible
commands is displayed.

install [-f, -s]
Install Particle toolchains and setup the neopo environment. It takes an optional parameter of -f
which can force toolchains to be reinstalled, rather than skipped if the latest versions are already
installed. To skip the installation of all dependencies, use the -s parameter instead.

versions
List all known versions of Device OS and supported platforms available to neopo. To refresh, run
update. Custom Device OS versions and platforms are included.

update Refresh the Workbench cache and download Particle toolchains if there are newer versions avail-
able.

get <version>
Download a specific release of Device OS version for later use. Any dependencies of the Device
OS release will be downloaded as well.

March 2022 1

NEOPO(1) neopo Manual NEOPO(1)

remove <version>
Delete an installed Device OS release if possible. Useful for systems with limited storage space.

particle [OPTIONS]
Access the Particle CLI distribution used internally by neopo. By using the neopo particle prefix,
any Particle CLI command can be accessed. For convenience, a particle alias is included with
neopo.

BUILD COMMANDS
compile/build [project] [-v/q]
Compile the application firmware of a given Particle project, or the current directory if it’s a
project. Settings applied using configure will be passed on to the compiler. The verbosity of the
output can be increased with the -v flag, or decreased with the -q flag.

flash [project] [-v/q]
Compile application firmware and flash to a connected device using DFU. On Linux the udev rules
file required for non-root access to Particle devices over USB can be installed using: neopo parti-
cle usb configure

flash-all [project] [-v/q]
Compile application and system firmware and flash all parts to a connected device using DFU. In-
credibly useful when an application targets a newer release of Device OS as it eliminates the need
for the device to download the release from the cloud.

clean [project] [-v/q]
Clean application firmware. Usually unnecessary but can eliminate some build errors.

PROJECT COMMANDS
create <project> [platform] [version]
Create a new Particle project at the specified project path. The created project is compatible with
neopo, Particle Workbench, and Particle CLI. If Git is installed, the project is additionally initial-
ized as a repository with support for TravisCI.

configure <platform> <version> [project]
Configure the device platform and Device OS version a project should use. The platform and ver-
sion are checked for compatibility and the specified version of Device OS will be downloaded if
not already installed.

To find Device OS versions and their supported platforms use versions. The tab completion func-
tion can fill in platforms and versions for this command.

run <target> [project] [-v/q]
Run a specified makefile target for a project. Includes common targets presented in BUILD COM-
MANDS in addition to other, less frequently used targets. The -v and -q flags are supported. Run-
ning without arguments will list available targets. The tab completion function can suggest targets
for this command.

export <target> [project] [-v/q]
Export a makefile target to a shell script. Instead of running the target on the project, a shell script
is created at bin/neopo-<target>.sh within the project. The script may be used to run the target on
the project directly without using neopo.

neopo March 2022 2

NEOPO(1) neopo Manual NEOPO(1)

flags <string> [project]
Set the EXTRA_CFLAGS variable to be used during compilation of a project. Useful for passing
additional definitions to the preprocessor.

settings [project]
View configured settings for a project. The device platform, Device OS version, and EX-
TRA_CFLAGS will be printed.

libs [project]
Verify or install Particle libraries specified in project.properties for a project. This command is
useful when working with projects that use the cloud compiler because it allows you to quickly
download the same libraries locally.

SPECIAL COMMANDS
bootloader <platform> <version> [-v/-q]
An experimental command to build and flash the bootloader for a specified platform and Device
OS version. After building the bootloader it is flashed over serial using particle-cli.

iterate <command> [OPTIONS] [-v/q]
An advanced command used to run an iterable command for all connected devices. For each con-
nected device, the devicelD is printed, the device is put into DFU mode, and the specified iterable
command is executed. This command was originally designed for quickly flashing multiple con-
nected devices, but there are many ways it can be used.

The following commands are iterable: compile, build, flash, flash-all, clean, run, script.

legacy <command>
An advanced command used to place Gen 2 devices on old deviceOS versions into and out of se-
rial mode and DFU mode. It triggers device states by imposing specific baud rates over the USB
serial connection. It also leverages particle serial list to automatically determine the correct port as
required.

The following commands are available as legacy commands: serial open, serial close, dfu open,
dfu close.

SCRIPT INTERFACE
One of the powerful features of neopo is the scripting interface. Neopo scripts are a list of commands to run
sequentially, with each command placed on its own line. Empty lines and lines starting with # are skipped.
Any neopo command can be used in a neopo script, even Particle commands. For sophisticated scripts the
Python module should be used instead.

script [file]
Execute a script with neopo. If a filename is not provided, neopo will accept a script piped in from
standard input.

$ neopo script myFile
$ cat myFile | neopo script

To relay information to the user, the print command can be used, and to wait for user interaction or ac-
knowledgement, the wait command can be used.

neopo March 2022 3

NEOPO(1) neopo Manual NEOPO(1)

Here is an example neopo script:

Configure the current project
configure argon 1.5.2

Prompt the user to plug in a device
print "Please plug in your device."
wait

Flash firmware to the device
flash

Prompt the user to wait for the device to connect
print "Please wait for your device to connect to the cloud.”
wait

Subscribe to incoming messages
particle subscribe

PYTHON INTERFACE
Neopo is distributed as a Python module. After installation, not only will neopo be available as a command-
line program, but it will additionally be accessible within Python. Users are encouraged to experiment with
neopo in Python scripts or the REPL.

Here is the script example implemented in Python:

import neopo

neopo.configure(argon”, "1.5.2", "myProject")
print("Please plug in your device.")
neopo.script_wait()

neopo.flash(*myProject™)

print("Please wait for your device to connect to the cloud.")
neopo.script_wait()
neopo.particle("subscribe™)

To directly use Particle CLI within Python, one can explicitly import the particle() function:

from neopo import particle
particle("help™)
particle(*'serial monitor")

device = "myFooMachine"
function = "myBarFunction
particle(["call", device, function])

CONFIGURATION
There are several environment variables that may be exported or passed to neopo to alter its configuration.
More environment variables may be added as neopo becomes more extensible.

neopo March 2022 4

NEOPO(1) neopo Manual NEOPO(1)

NEOPO_LOCAL
When set, neopo will use “/.local/share/neopo for neopo resources, Particle CLI, and toolchains,
rather than “/.particle and “/.neopo

$ export NEOPO_LOCAL=1
$ neopo install
$ neopo particle

NEOPO_PATH
When set, neopo will use a specific path for its dependencies, rather than “/.local/share/neopo

$ NEOPO_PATH="build/neopo" neopo install

NEOPO_PARALLEL
When set, neopo will download dependencies in parallel, slightly improving overall download
time.

$ NEOPO_PARALLEL=1 neopo install

AUTHOR
Nathan Robinson <nrobinson2000@me.com>

COPYRIGHT
Copyright (c) 2021 - Nathan Robinson. MIT License: All rights reserved.

REPORTING BUGS
nrobinson2000/neopo on GitHub: <https://github.com/nrobinson2000/neopo>

SEE ALSO
Online Documentation: <https://neopo.xyz/docs/full-docs>
Particle Developer Forum: <https://community.particle.io>
Workbench Documentation: <https://docs.particle.io/workbench>
Particle CLI Documentation: <https://docs.particle.io/reference/developer-tools/cli>

NOTES
On Arch-based distributions using the neopo-git package from the AUR is recommended.

There are several additional steps required to complete the install of neopo. These steps are contained in a
script located at /usr/share/neopo/scripts/POSTINSTALL. For convenience, this script can be executed us-
ing: neopo setup

On x86_64, this consists of installing the ncurses package from the AUR to support use of the Particle De-
bugger in Workbench. On aarch64, this consists of replacing the armv7l Nodejs distribution with an
aarch64 Nodejs distribution.

Using neopo on armv7l and aarch64 is incredibly feasible. On average, builds run only a few times slower
than on Linux x86_64 systems, which is still much faster than using Particle Workbench on Windows.
Hopefully Particle will differentiate between armv7l and aarch64 in future releases so that using Particle on
aarch64 will become more accessible. Using Particle Workbench on aarch64 is possible through the use of
neopo. After installing visual-studio-code-bin from the AUR, the Workbench extensions can be installed
and prepared with: neopo setup-workbench

neopo March 2022 5

